MOM 6.2.10

16.2. Test Case B

This example describes the calculation of field difference in a observation plane of points between two boxes without and with a slot, having a dipole in one of the boxes. The same process will be performed on a line of observation inside the box in which the dipole is not found.

Step 1: Create a new MOM Project.

Open 'New Fasant' and select 'File --> New' option.

Figure: New Project panel

 

Select 'MOM' option on the previous figure and start to configure the project.

 

Step 2: Create the geometry model.

Execute 'box' command writing it on command line and sets the parameters as the next figure shows when command line ask for it.

Figure: 'Box' Command parameters

 

To generate other box execute 'symmetric' command as the next figure shows.

Figure: 'Symmetric' command parameters

 

Step 3: Set Simulation Parameters

Select 'Simulation --> Parameters' option on the menu bar and the following panel appears. Set the parameters as the next figure shows and save it.

 

Figure: Simulation Parameters panel

 

Step 4: Set the antenna parameters.

Select 'Antenna --> Dipole Antenna' option and set the parameters as show the next figure. Then save the parameters and the antenna appears.

 

Figure: Dipole Antenna panel

 

Step 5: Set Near Field parameters.

Select 'Output --> Observation Points' option. The following panel will appear.

 

Figure: Observation Points panel

 

To add a plane visualization, select 'plane' on the selector of 'Geometry Types' section and click on 'Add' button. The plane parameters panel will appear, then configure the values as the next figure show and accept it clicking on 'OK' button.

 

Figure: Observation Plane panel

 

The observation will appear as a dashed line on the position configured.

 

Figure: Observation visualization

 

To add the line observation, repeat this step with the 'line' option on the selector of 'Geometry Types' and the following parameters.

 

Figure: Observation Line Panel

 

Figure: Observation visualization

 

Step 6: Meshing the geometry model.

Select 'Meshing --> Parameters' to open the meshing configuration panel and then set the parameters as show the next figure.

 

Figure: Meshing panel

 

Then click on 'Mesh' button to starting the meshing. A panel appears to display meshing process information.

 

Figure: Meshing process log

 

Step 7: Execute the simulation.

Select 'Calculate --> Execute' option to open simulation parameters. Then select the number of processors as the next figure show.

 

Figure: Execute panel

 

Then click on 'Execute' button to starting the simulation. A panel appears to display execute process information.

 

Figure: Execute process log

 

Step 8: Save the project

Select 'File --> Save' option to save the project. Select a name and a path to save it on the file chooser that appears.

 

Step 9: Modify the geometry to make the slots in the boxes.

Execute 'explode' command with the boxes selected and follow the steps like shows the next figure. This command divide each object on independent surfaces.

 

Figure: 'Explode' command

 

Execute 'delete' command with the nearest surface to observation plane selected in the boxes.

 

Figure: 'Delete' command

 

Execute 'plane' command with the parameters shows on the next figure.

Figure: 'Plane' command

 

Repeat the operation with the following parameters.

Figure: 'Plane' command

 

Execute 'explode' command with the new planes selected.

 

Execute 'booleanDifference' command with the surfaces given for the previous 'explode'. This command ask for two surface to eliminate the second one from the first one.

Figure: 'booleanDifference' command

 

Execute 'rotate' command with the new surface previously selected, using the parameters shown on the next figure.

Figure: 'Rotate' command

 

Execute 'symmetric -c' command with the surface used on previous step. Use 'symmetric' parameters as the following figure shows.

Figure: 'Symmetric' command

 

Execute 'group' command with the surfaces composing one of the boxes previously selected. Then repeat the operation with the surfaces composing the other box.

The final result is a geometry with two boxes with a slot on the front surface to the observation plane.

Figure: Geometry visualization

 

Step 10: Meshing and calculate again like steps 6 and 7.

 

Step 11: Show results.

Select 'Show Results --> Post-Process' option to calculate the field difference on the plane observation between this example (slotted boxes) and the example executed on the first part of this guide (closed boxes). To see the result as a plot, select 'plot' on the selector of 'New Trace' option and click on 'OK' button.

 

Figure: Post-Process Trace panel

 

To import the result of the other project, first select the result to show on 'Simulation results', 'Results Type' and 'Results Options' combo boxes. In this case, the values of the next figure for 'Trace options' panel.

Figure: Trace Options

 

Then click on 'Import trace form project' button to import the selected results to a project. In the panel that appears, select the project on the file chooser opened with 'Browse' button. Then click on 'Save' button to import the results. The imported results appears on 'Results Type' combo box as a new entry with the name of the selected to import with an index indicating the order of the imported projects.

Figure: Imported trace

 

 Set the parameters as next figure and add on 'OK' button.

 

Figure: Field Difference parameters

 

Figure: Field Difference plot visualization on plane observation

 

To show the result as a diagram, repeat step 11 selecting 'diagram' on the 'Post-Process Trace' panel.

Figure: Field Difference diagram visualization on plane observation

 

To show the same results over the line observation, follow the steps explained for the plane observation but previously to click on 'OK' button to show the results, click on 'Parameters' button on 'Trace Representation' panel. Then select the line observation on the panel that appears and confirm the changes.

 

Figure: Field Difference plot visualization on line observation

 

Figure: Field Difference diagram visualization on line observation

 

 

 

We use cookies on this website to improve your navigation experience on this site. By using this site, you agree to our cookie policy.

I agree