Scripts and User Functions Center

Dolph-Chebychev algorithm for bidimensional arrays

This function uses a Dolph-Chebychev algorithm to obtain the weights and phases of each element in a bidimensional array. The results of the function define the pointing of the array in the given direction.

void bidirectional_dolph(double d1, int N1, double R1, double d2, int N2, double R2, double theta, double phi) {  //d1:element spacing of array x in units of lambda
											                                                           //N1:number of array elements of array x
											                                                           //R1:relative sidelobe level (in dB) in array x in units of lambda
											                                                           //d2:element spacing of array y
											                                                           //N2:number of array elements of array y
											                                                           //R2:relative sidelobe level (in dB) in array y
											                                                           //theta:beam angle (in degrees)
											                                                           //phi:azimut angle (in degrees)
											                                                           
//This function uses a dolph-chebyshev algorithm to calculate the weights and phases in an bidirectional array of antennas 											                                                           
	
	int N=N1*N2;
	Cmplx[] a=new Cmplx[N1];
	Cmplx[] b=new Cmplx[N2];
	Cmplx[][] c=new Cmplx[N1][N2];
	Cmplx[] pesos=new Cmplx[N];


	a=dolph(d1, theta, phi, N1, R1, 1);   //call to the dolph_1.java and store in a the results (complex numbers) of the array in x
	b=dolph(d2, theta, phi, N2, R2, 2); //call to the dolph_1.java and store in b the results (complex numbers) of the array in y

	double[] fase=new double[N];
	double[] y=new double[N];     //vectors of N elements double type

	int cont=0; //initialize cont to 0
	for (int i=0; i<N1; i++){
		for (int j=0; j<N2; j++){
			c[i][j]=a[i]*b[j];     //multiply the values of array x and array y to obtain the two-directional results 
			pesos[cont]=c[i][j];   //store these results in order
			cont=cont+1;           //increment cont
		}
	}

	for (int n=0; n<N; n++){
		y[n]=(Cmplx.abs(pesos[n])); //find the absolute of the complexes, that is, the weights
		fase[n]=(Math.atan2(pesos[n].imag, pesos[n].real)); //find the phase in radians
		if (fase[n]<0){ /// if the phase is less than 0
			fase[n]=2*Math.PI+fase[n]; //add 2*pi
			}
		fase[n]=Math.toDegrees(fase[n]); //find the phase in degrees
	}
	writeFile("./mydatafiles/dolph_bi.txt", y,fase); //write the weigths and phases in a text file

	
}

Did you find this information useful?

We use cookies on this website to improve your navigation experience on this site. By using this site, you agree to our cookie policy.

I agree