newFASANT

Array Dipoles

Benchmark: Array Dipoles Software Version: 6.2.7 Date: 29 Nov 20:32

Index

1. BENCHMARK DESCRIPTION AND OBJECTIVES	3
1.1. GEOMETRY CREATION 1.2. SOURCE 1.2.1. DIPOLE ARRAY 1.2.2. ANTENNA FEEDING	3 4 4 6
2. SET-UP DESCRIPTION	9
2.1. SIMULATION PARAMETERES2.2. SOLVER PARAMETERS2.3. OUTPUT PARAMETERS2.4. MESHING PARAMETERS	9 9 11 12
3. RESULTS	13
3.1. RADIATION PATTERN	13
4. CPU RESOURCES	20

1. Benchmark description and objectives

This benchmark is divided into two steps:

- an example to show how to define an array of dipoles set the direction of the main beam and analyze it obtaining the 3D radiation pattern.
- after that, how the antenna feeding can be modified easily, in order to modify the direction of the main beam.

Explaining the recommended parameters for analyzing an array of dipoles and how to set the direction of the main beam are the main aims of this tutorial, but most of them are also general for similar problems, such an array of antennas defined by radiation pattern.

An array of 7 x 7 dipoles located on the plane XY has been chosen. The test case is shown in the below figure:

Test case

Default parameters are kept unless otherwise is stated. Anyway, effects of changing most of the parameters are briefly stated.

This example is generated using **MoM** module, so create a **new MoM project** by clicking on **New Project** button and selecting the **MoM** option.

1.1. Geometry creation

Only a ground plane is built using the *plane* command or **Geometry - Surface - Plane** menu. The first corner of the plane is (-0.5, -0.5, -0.023) and the dimensions of the plane are 1 x 1 m.

Plane definition

1.2. Source

1.2.1. Dipole Array

The Dipole Array operation is a fast way for generating a higher number of dipole antennas when they are placed in array structures, where a set of closely located dipoles should be simulated. To create a Dipole Array, select a **Source - Dipole - Dipole Array** menu to display the Dipole Array panel, as shown in the figure:

Source Output Meshi	ng Calculate Show Re-	suits Tools Help											
Para Vise		1005	4										
Denk	1 Dipole Antanno		-	1		-			 				
Puttern File	< Dipole Array	Patter Gala #	Radiation Pattern Cuts #	Current Density # P	a field Cuts * Pa	PHECUS # 1	FREEDA N	Far field Guts .		one Array &			
Multipole Antenna										Set dyoks			
Coasial Feed										-Tarrier of marrier of	-	+31	1.64
Wavepuides											_	-180	100
Primitive Antenna										-NAME IF BRITCH		100	
Ratome										Congenents			
Reflectors										Analise 10	Press lines		80
Reflectionay									1000		- De per		-
Import Pattern File	10								-	Orientation.			
Edit Antenna									-	Orector costres (54	ercal Rutation	2.64	
Delete Antenna										110			
Antenna Sox									-	7.600 .00			2
Antenna Texaling												-	
									1.1	1.000 1.0	0.0	-	
									1.1				
										Anau center			
									1-1	N 0.0 Yi	6.0		60
										Anay parameters			
									1	Number of Elements II:		te i	14
									101	Number of Dements 1)		Ten 6	14
									1	Number of Denents 2:	4	te	80
									11	Ansy unertaktion			
									1	Orector courses (5,8	ercal Rotation	2.64	
										XAme L			k] –
										YANK Ø	1		
									/ /	2 Aug. 0	0		1

Dipole Array panel

In this example, an array of 7x7 electrically short dipoles is created, and the dipoles are oriented the following *x*-axis and located in the *z*=0 plane.

So, the following settings are available for defining the appearance of the overall dipole structure.

- Set dipoles: this setting specifies how many magnetic and electric dipoles have to be generated. This feature is covered later in this section.
 - **Number of magnetic dipoles:** set the number of magnetic dipoles that each one of the generated dipoles will have.
 - **Number of electric dipoles:** set the number of electric dipoles that each one of the generated dipoles will have. In this example, one electric dipole is selected.
- Components: the amplitude and phase for the dipole moment for each generated antenna.
- **Orientation:** dipole antenna rotation. There are multiple ways for setting the orientation.
 - Director Cosines: manually set the director cosines for the dipole.
 - **Spherical:** set the orientation using spherical system (theta, phi, alpha).
 - **Rotation**: specify X, Y, and Z angles as degrees.
 - **Z-Axis:** this option can be used for manually defining the local Z-axis of the dipole.
- Array center: the cartesian center for the generated dipole array structure. For a more precise mode, the pick-point mode can be enabled. Select Pick then clicks anywhere in the 3D Panel. The position where the mouse clicked will be set as coordinates.
- Array parameters: this setting lets the user specify the number of dipoles to be generated and the separation between each dipole. In this example, 7 dipoles in the *x*-axis and *y*-axis are setting.
- Array orientation: similar to the dipole orientation, this control lets the user specify the array rotation.

When the number of magnetic dipoles is greater than 0, the position and orientation of magnetic dipoles can be selected by pressing the Position button.

When the number of magnetic dipoles is greater than 0, the position and orientation of magnetic dipoles can be selected by pressing the Position button.

When all the parameters have been set, press *Create Array* to create the dipoles. *Note that* generating the dipole generation will create separate dipoles. So, after generating the dipole array, you will be able to modify the values for each dipole separately.

1.2.2. Antenna feeding

Once the dipole array has been built, the antenna feeding can be modified in the **Source - Antenna Feeding** menu. In this panel: the user has to set the degrees (theta and phi) and click on calculate phases in order to compute the amplitude and phase of each array element (the algorithm selected in the right windows considers a uniform amplitude of the array element weighs and a linear phase distribution) or the user can modify each amplitude and phase of each array individually.

The amplitude and phase feeding each element have been saved clicking on *Save button*.

In order to use this antenna feeding in other projects, the user can export the array weights by clicking on the *Export button* and the weights are exported as a .txt file. The values of this file can be edit and modify and later import in the feeding menu. Also, the user can generate these files using other software, e.g. the toolbox for arrays of MATLAB.

• First step

In this step, the user set theta = 30° and phi=45° and click on calculate phases, then click on Save button to save the amplitude and phase feeding each element.

The user has to save this project as array_dip0.nfs.

	 newFASANT - 		- 0
Solver Several Output Meshing Calculate Show Results	Tools Help		
R. C. Parelline	1 I S 4		
V Danie +			
Falat Patan Na Adator	Asten-Euls # Radaton-Patern-Euls # Current Density # Par Reld Guts # Par Reld Euls # Par Reld Guts	* FarRelGuis * People *	
Multissis Asterns		Fearmer of the part have identical	
funished a		Contrast of the state of the state	
Containing		Pres (2%) 2.0 Teste 21.0 Pix 42	Calculate Phases
visveguden *			
Primitive Lettersta >		Areceleter in h 10 h 20 h	4.4
Falone +			
Advance A		Anterna Center Hodule	Place (Argreen)
And a second		Davie Armine - 0 (-0.144000000000 1.0	6.56
Reflectionay +		Depute Antenna - 1 (-0.1++0000000000	301.47
Internet Partners File		Dpole Arterna - 2 (-0. 144000000000 1-0	344,37
La Longe		Danie Writering - 3 (-0.144000000000 1.0	10.28
Line Arrison		Depie Arterna - 5 (-6.144000000000	61.09
Debela Antenna		Danie Anterna - 6 (-0.144000000000	8.0
Antenna Spa		Dipole Antenna - 7 (-0.096000000000	816.47
Antonio function and		Dpole Anterna - 8 (-0.096000000000	344.37
And the second		Dapate Antenna + (-0.09000000000 L.0	283.28
		Devis Arterna - 11 (-1.09000000000 1.0	61.08
		Davie Arterna - C2 (-0.0960000000000000000000000000000000000	6.0
		Dpole Arterva - 13 (-0.09600000000 1.0	298.9
	5555555	Davie Anterna - 14 (-0.048000000000	244.37
		Equie Antenna - 15 (-0.048000000000	183.28
		Depter Wilsons - 18 (-0.04000000000	111.19
		Taxis Artistics 18 (d. 19800000000) 1.4	8.0
		Dpole Arterna - 29 (-0.048000000000 1.0	298.9
1 1 1 1 1 1	2222222	Davie Anterna - 20 (-0.048000000000	237.85
		Dpole Arminia - 21 (5.6, 4) 144000000	983.28
		Danie Writerva - 22 (3.6, 4.09600000 1.0	111.10
		Texis Arterna - 34 (0.4.5.6.0) 1.0	8.0
		Davie Anterna - 25 (5.3, 6.5-0900000 1.0	28.9
		Equie Arterna - 26 (0-3, 6-350000000	237.46
		Dpole Writevia - 27 (0.5, 6.1+600008	176.71
the second se		Depth Arterva - 26 (L.D.C.Monomonia - L.D.	111.18
		Davis Artistra - 20 D. Schwarzowa 1.0	1.0
		Dpole Arterna - 31 (3-3-0000000000	298.9
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Dpole Artering - 32 (0.5476000000000 1.0	257.81
Part I The second		Davie Anterna - 33 (3.1-01000000000	136.75
		Depte Anterna - 34 (5.5-00000000000 1.0	115.42
		David Antonio 20 (2000000000000000000000000000000000	81.09
		Danie Armana - 37 (S. 1050000000000 1.0	298.9
		Dpole Anterna - 38 (2.00000000000	217.41
		Dipole Anterna - 26 (E-200000000000	136.75
		Dpole Arterva - 40 (3.00000000000000000000000000000000000	115.42
		Danie Arterna - 41 (2.000000000000000000000000000000000000	94.52
		The state of a partition of the	
Dealth dealth() 4.4		 NE value to selection Poolule: 1.0 Phase: 	0.8
die plane		- Depart Factor	- Dava
Transfer dependents 2 2		A DESCRIPTION OF THE PARTY OF T	1000

Antenna Feeding Panel

• Second step

Once the previous project has been simulated and its results have been shown, the user has to save it with a new name: array_dip0_weighed.nfs, in order to modify it.

The antenna feeding can be modified in the **Source - Antenna Feeding** menu. The first seven rows of feeding weights have been selected, note: the user has to maintain press the Ctrl key and select all the rows when a row is selected, it is highlighted in yellow, the corresponding array element. Then, in the module column, we write 0.4 and click on fill value to selection. We can notice that the amplitude of the weights of the seven first elements of the array change from 1 to 0.4.

We repeat the procedure with other elements in the array edges in which we impose an amplitude of 0.4. In contiguous elements, we write an amplitude of 0.8, then we click on save button to keep the new values.

Freq (GHz):	3.0 Theta: 0.0	Phi: 0.0	Calculate Phases	
Array phase center	-> X: 0.0 Y:	0.0 Z:	0.0	
Antenna	Center	Module	Phase (degrees)	T
Dipole Antenna - 0	(-0.1440000000000	0.4	6.56	
Dipole Antenna - 1	(-0.1440000000000	0.4	305.47	
Dipole Antenna - 2	(-0.1440000000000	0.4	244.37	_
Dipole Antenna - 3	(-0.1440000000000	0.4	183.28	_
Dipole Antenna - 4	(-0.1440000000000	0.4	122.18	_
Dipole Antenna - 5	(-0.1440000000000	0.4	61.09	_
Dipole Antenna - 6	(-0.1440000000000	0.4	0.0	
Dipole Antenna - 7	(-0.0960000000000	0.8	305.47	
Dipole Antenna - 8	(-0.0960000000000	0.8	244.37	
Dipole Antenna - 9	(-0.0960000000000	0.8	183.28	
Dipole Antenna - 10	(-0.0960000000000	0.8	122.18	
Dipole Antenna - 11	(-0.0960000000000	0.8	61.09	
Dipole Antenna - 12	(-0.0960000000000	0.8	0.0	
Dipole Antenna - 13	(-0.0960000000000	0.4	298.9	
Dipole Antenna - 14	(-0.0480000000000	0.4	244.37	
Dipole Antenna - 15	(-0.0480000000000	0.8	183.28	
Dipole Antenna - 16	(-0.0480000000000	1.0	122.18	
Dipole Antenna - 17	(-0.0480000000000	1.0	61.09	
Dipole Antenna - 18	(-0.0480000000000	1.0	0.0	
Dipole Antenna - 19	(-0.0480000000000	0.8	298.9	
Dipole Antenna - 20	(-0.0480000000000	0.4	237.81	
Dipole Antenna - 21	(0.0, -0.144000000	0.4	183.28	
Dipole Antenna - 22	(0.0 -0.09600000	0.8	122.18	

Antenna Feeding Panel

Then we export the array weights by clicking on the *Export button* and the weights are exported as a .txt file. The values of this file can be edit and modify and later import in the feeding menu. Also, the user can generate these files using other software, e.g. the toolbox for arrays of MATLAB.

8

8	weigth, window.txt, Bloc de notas	- 0 ×
ğehen Şılıcan Eşmata yar Ayşıla		
49		
e, a 6, 56		
6.4 365.4J		
1.4 294.1V		
LA 110 18		
4 61.00		
LB 345.47		
8.8 344.17		
.8 183.29		
8.8 61.29		
0.4 298.9		
6.4 344.37		
0.8 183.18		
1.0 132.18		
.# 61.89		
1.0 0.0		
R.8 298.9		
P.4 237.85		
N.4 583.28		
P. H 122.1H		
1.0 \$1.09		
1.0 0.0		
1.8 298.9		
N.8 237.80		
0.4 176.71		
0.4 122.18		
0.8 51.09		
1.4 4.4		
1.4 298.9		
1.0 212.00		
1.4 1.4.1		
0.4 115.42		
1 217.45		
A 170.75		
4 515.43		
4 54.52		
4 368.0		
4 298.9		
4 217.40		
.4 176.75		
4 115.42		
1.4 54.52		
4 253.43		

.txt file

2. Set-up description

The main parameters recommended for solving this benchmark are presented in this section.

Every parameter value is justified and also a brief resume about the benefits and inconvenient of setting-up the recommended value or changing it are also included.

Critical parameters are highlighted and also justified.

2.1. Simulation parameteres

The main simulation parameters are resumed in this section.

Click on *Simulate - Parameters menu* to open the Simulation panel. A simple frequency will be considered, so set the **Initial Frequency** to **3 GHz**. due to the **None selection**, the most of the radiation pattern parameters, such as the 3-D pattern, or the currents density will be obtained.

No materials are required for this example, as the ground plane is metallic.

2.2. Solver parameters

In this example, all parameters are set-up by default within this section, as shown in the below figure.

ver x	
Solver Method	
O Physical Optics (PO)	Method of Moments (MoM)
Architecture Strategy	
MPI (Messages Passing	Interface)
OpenMP (Multi-Process	ing)
Electromagnetic Equation	
● EFIE ○ MFIE	O CFIE, parameter: 0.5
Solver Functions	
Subdomains	Advanced Options
Other Parameters	
Relative error:	0.01
Maximum number iteration	s: 5000
	Save

Solver Parameters

In the advanced options, the preconditioner has been set-up as shown in next figure:

Main Properties	Preconditioner	
Preconditione	r	
Enable P	reconditioner	
Diag	onal Preconditioner	
🔿 Spar	se Approximate Inverse Preconditioner	(SAI)
	Sparsity Distance: 0.25 Lambd	as
	Filtering Threshold	
	Pre-Processing: 0.03	
	Post-Processing: 0.03	
		Sav

2.3. Output parameters

Far Field results are considered in this example.

The radiation of two cuts will be computed in this simulation:

- phi=45°, theta=0° to 180° (181 samples)
- theta=30°, phi=0° to 360° (361 samples)

So, click on **Output - Observation Direction** menu, and set the required parameters in the Observation Directions panel, and click on **Save** button before closing.

0.0 0.0 1.0 361 360.0	Add	lete	Delete
	Add	lete	Delete
	Add	lete	Delete
Delete Ad			
cuts		·	tuts
Phi cut Initial theta Increment Samples Final the	s Final theta	ut Initial theta Incremen	hi cut
5.0 0.0 1.0 181 180.0	180.0	0.0 1.0	i. O

Observation Direction panel

2.4. Meshing parameters

The most of the parameters are set-up by default within this section, as shown in the below figure. Two parameters have been modified for this example: the division per wavelength: planar and curved surfaces have been set to 8.

Divisions per wavelength Planar surfaces: 8.0 Curved surfaces: 8.0 Mesh Mode Octaves Bands per octave: Frequency Frequency Frequency GHz): 3. OAll Frequencies Processors Processors: 1 ✓	and a	
Planar surfaces: 8.0 Curved surfaces: 8.0 Mesh Mode)ivisions per wavelength	
Curved surfaces: 8.0 Mesh Mode Octaves Bands per octave: Frequency Frequency (GHz): 3. All Frequencies Processors Processors: 1 ~	Planar surfaces: 8	3.0
 Mesh Mode Octaves Bands per octave: Frequency Frequency (GHz): All Frequencies Processors Processors: 1 	Curved surfaces: 8	3.0
Octaves Bands per octave: Frequency Frequency (GHz): All Frequencies Processors Processors 1 ✓	1esh Mode	
Bands per octave: O Frequency Frequency (GHz): 3. O All Frequencies Processors Processors: 1 v	 Octaves 	
Frequency Frequency (GHz): 3. All Frequencies Processors Processors: 1	Bands per octave:	1
Frequency (GHz): 3. () All Frequencies Processors Processors: 1 v	O Frequency	
 ○ All Frequencies Processors Processors: 1 ∨ 	Frequency (GHz):	3.0
Processors Processors: 1 v	All Frequencies	
Processors: 1 v	rocessors	
	Processors: 1 v	
Nore Options	fore Options	
Advanced Settings	Advanced Settings	
Ma		Mach

Meshing parameters

3. Results

Results obtained in this benchmark are included in this section.

3.1. Radiation Pattern

• First case

As the simulation Type has been set to None, multiple options are available within the Show Results menu: *Far Field, Radiation Pattern, View Currents and View Charges*.

Ther Radiation Pattern for the cut Phi=45^o and Theta=30^o can be shown by clicking on **Show Results** - **Far Field** - **View Cuts**. In this panel, on **Options** box, the user can add or delete new curves, in order to compare them.

With the *Export button*, the values of this cut will be saved in a .txt file and with the *Import button*, new values can be imported in order to visualize them.

Radiation Pattern at Theta=30^o

The 3-D pattern can be visualized by clicking on *Show Results - Radiation Pattern - View 3D Pattern*.

By selecting *Enable Filtering* in *Filtering Range*, the appropriated range for the color palette can be fixed.

n (dB)	Step and Frequency	
21.2223	Step: 1 v F(Hz): 3.059 v	1
3.0437	Component Gain Lineal 🗸	
-15.1348	ETotal Gain 🧹	
-33.3134	Crable Filtering Max: Min:	
-51.492	Radus +	
-69.6706	Radiated Power 774005.73952495 Watts	
-87.8492		

Radiation Pattern

Any cut within the 3-D pattern can be also visualized by clicking on **Show Results - Radiation Pattern** - **View Cuts**. The figure below shows the Radiation Pattern for the direction *Phi=0*^o.

Radiation Pattern at Phi=0^o

The *Current Density* can be visualized by clicking on *Show Results - View Currents*. The next figures show three currents at different frequencies.

rrent Density (dBA/m) 56.555	Step: 1 ~ F(Hz): 3.0E9 ~	
42.9808	Magnitude () dBs () nat	
29.4066	Field Component	
15.8325	Filtering Range	
2.2583	Min: Filter	
-11.3159		
-24.89		

Current density

• Second Case:

The 3-D Pattern can be visualized by clicking on Show Results - Radiation Pattern - View 3D Pattern.

3D Radiation Pattern

The Radiation Pattern for the cut Phi=45^o has been shown by clicking on **Show Results - Far Field -View Cuts.**

Radiation Pattern cut for Phi=45°

The radiation pattern of the previous project will be imported, in order to check the effect of modifying the weight of the array elements in the radiation.

Click on Import Series button and import the .txt files of the results of the previous project.

Import .txt file

Comparison of the results for a phi=45^o cut. Array with windowed weights (red line) and array with original weights (blue line)

Comparison of the results for a phi=30° cut. Array with windowed weights (red line) and array with original weights (blue line)

In this case, we can appreciate that the array with windowed weights has its lobes at a lower level.

4. CPU Resources

The benchmark includes a resume of the average computational resources required for achieving the provided results according to the *Simulation Type*.

(CPU type	Workstation / Pers	<u>sonal Computer</u> / Laptop
Simulation Type	Number of processors	RAM required (MB)	Time required (mm : ss)
None	16	150	00 : 30

Resources resume